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THE METHOD OF VIRTUAL ABSORPTION IN PLANE DYNAMIC PROBLEMS* 

V. A. BABESHKO and 0. D. PRIAKHINA 

The method of virtual absorption /l/ is applied to plane dynamic contact problems 

of the theory of elasticity, and it modification in the part concerning the selec- 

tion of basic functions is presented. It is shown that systems of delta functions 

with nonintersecting carriers may be used as basic functions. Results of numerical 

analysis of a concrete problem which show the effectiveness of the proposed method 

are presented. Other methods of solving these problems were used in /2-5/. 

1. In a number of plane dynamic contact problems on the oscillation of stamps on the 

surface of regions whose boundaries stretch to infinity the integral equations are ofthe form 

where q(z) are amplitudes of the unknown complex contact stresses and f(z) are the amplitud- 

es of functions that define the motion of the stamp surface. 

The properties of function K(u) are given in /6/. They comprise: analyticity, evenness, 

and realness for real arguments, and the representation of such functions in the form of the 

ratio of two entire functions whose behavior at infinity is defined by c 1 u I-l, 1 u I--f CO. 
The selection of contour c is dictated by the principle of virtual absorption in con- 

formity with rules indicated in /6,7/. 

According to /8/ the integral equation (1.1) is uniquely solvable for any twice contin- 

uously differentiable right-hand side in the space of functions that are continuous with 

weight, and the correction formula is 

For constructing an approximate solution of the integral equation (1.1) we approximate 

function K(u) by the expression 

KI (u) = Ko (u) H (~1, H (u) = c fi (us - zk2) (u* - pk2)-’ (1.2) 

As K, (u) we can take (u2 + E?)-"' or u-'th AIL , taking into account the properties of 

function K(U) defined above and, also, the property 

I K (u) - K, (u) I I K-* (IL) I (1 f I u IF < 6, a > ‘/,I I u I < 00 
By Theorem 2 in /6/ we have in this case also the closeness to solutions of integralequa- 

tions of the form (1.1) with kernels K(U) and K, (u), for fairly small 6. In the above 

equation B >0 is an arbitrary parameter whose selection will be dealt with later. 

For solving the integral equation (1.1) with kernel K,(u) we use the method developed 

in /l/. 
we seek a solution of the form 

Q (z) = Qo (z) + 'p (z) (1.3) 

where the unknown function m(z) is chosen on the basis of the condition of equality of func- 

tionals 

j !?(s)e 
+%Xdmz 

-n 
_~~Ip(z)e='P*"ds. /z=l,Z,...,n (1.4) 

These functionals of the unknown function qO(z) are zero, and J+ are poles of function 

such that Im pI; > 0. 
Application of the method of /l/ presupposes the expansion of function (p(z) in any com- 

plete linearly independent system of functions. As such function we take the Dirac delta func- 

tion with carriers at points zk, i.e. we seek a solution of the form 
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where cg are constants that are to be determined and xk = f y,, yk are points that divide 

the interval (0, a) in three equal segments. 

Without loss of generality, we set f(x)= e-iqx, Irnq = 0. The substitution of (1.5) into 

(1.1) yields an equation of the form 

s' k,(x- E)t(E)G=g@), 121<a, IiD( & 5 K,(~)e-~~du (1.6) 

-Cl -7 

2n 

g (x) = e-‘W - & C Ckk (2 - Xk) 

k=1 

(1.7) 

z’(u)=H(u)Q~(u), T(u)= 1 t(x)eiuxdx 
--a 

(1.8) 

Function qO(s) introduced by formula (1.3) is defined by the relation 

Equation (1.6) with arbitrary right-hand side g(s) is solve asymptotically for K,(U) = 

(u'+ B2)-'ll /6/ and exactly for K, (CL) = u-'th Au /9,10/. 

We denote by ~"(zL, 11) the Fourier transform of solution of the integral equation (1.6) 

with the right-hand side g (.r) == edin". Aftes the application of the Fourier transform the solu- 

tion of Eq. (1.6) with the right-hand side (1.7) assumes the foml 

T (u) = T (u. q) - & c ck 5 T (u, q) K (q) ei’- dq 

Let us consider the case when K,(u) == (u2$ B2)-vz and when in conformity withstipulations 

of the method of virtual absorption, we set B> 1. Using the methods of /6/ and taking into 

account that function K,(u) has no singularities on the real axis, we obtain 

T(u 11)= i l/(B$- ilL)(B --(11) ei(u-rl)n_ i 

‘l--u 11 - 1‘ 

Note that condition (1.4) is satisfied, since Q,,(& ~1;) 0, k = 1,2,...,n. 

According to the lemma in /l/ for function qo(s) to have a carrier in region 52 (Q : 15 I< 
a) it is necessary and sufficient that 

from which we have 

where Zk are zeros 

g(z)r*‘-dz=O, l,,=i,Y, _..,I r 

T (rk a-1 = 0, k = 1, 2. . . ., TL (1.10) 

of function H (u) such that Imzh > 0. 

Relations (1.10) represent 2n equalities for the determination of 2n unknown ch- , 
which for the determination of coefficients CA reduce to the system 

an 
~~,clin(+3~_xk)=B(~~r,11). 1=1,2,. . . >H9 A (u, x1;) = f (u) F (u, zh.) + f C-U) F (-% -5k), (1.11) 

f (U) = v/B - iu e-i’Lu, 

B (w fd = i (u - d-‘If (-9 f (4 cp (u) - f (11) f (-u) cp t-u) - 

Jfq” + 82 (q(q) - 1) cb(“-v) +1/q” + B* (‘p (-q) -l)e-iO(u-~)], rp (u) = erf v/a= (B- iu) 

Having determined Ck using system (1.U) we determine function qo(z-) by formulas (1.8) 
and (1.9). We have 

qO(x)=&S-$$$~-iurdu_ &$ckS_!_k_% 2n 

H (u) 
e-iux du - c ckb (5 -xk) 

(I -1 0 R=1 

Taking into account (1.5) we obtain the contact stresses under the stamp 

s 

v/B+iu - ei(a-x)udu -9 eiaq 5 

HP) (u-4) 

vBT &a+x)u & _ 

H(u) (1~ -_tl) 
a a 

(1.12) 
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U, zk) e+‘++ + F (u, - q) ,+(a-x)u] d,, 

Function H(u) can be represented in the form 

H (u) = [I + H, @)I c, H-’ (u) = fl + H, (u)lc-‘, HI (u) = igl ui (11’ - Pi’)-‘, HT (u) = jil fij (u" - z?)-' 

Using these relationships and applying formulas of operational calculus to (1.12) we obtain 

Functions Fj(xh) and Qi(n, z) are of the form 

lip,(a-xh) 

The contact stresses Q(S) were computed by formula (1.13) on a computer. 

2. As an example we shall consider the plane problem or vibration of a stamp of width 

"0 resting without friction on an elastic layer of thickness h rigidly coupled to an unde- 

formed base. The problem is reduced to an integral equation of the form (1.1). 

When the specified vertical displacements of the stamp at the layer surface in region 

1~ [-a, al are harmonic, the kernel K(U) is of the form 

li (8,) = llrx,%, (o,o,sh ho, ch I+ - u%h ho, sh ho,) ((24 - &+2) qc~~ - (Zd - 

I~-A~- -,- ‘:4xca) (T,(T~ rh AU, ch hn, ~;- ~2 [?~a - ~2 (x"~ -i_ ~"~2) + l/,x$ + x1*x2*] sh.hfi, sh hn,]-' .>. n 

K (IL) - II 1 u i--1, IuJ-+m, c=l --Y 

where ). and p are Lam6 coefficients, and VS P, and o are, respectively, 

ient, density of material, and the stamp oscillation frequency. Function 

properties ennumerated above and is approximated by function K1(l~) of form 

To construct the approximating function we first determine the curves 

the Poisson coeffic- 

K(u) has all the 

(1.2). 
of real zeros and 

poles of kernel K(u) in terms of parameter x2 . Then, using Bernstein or Lagrange poly- 

nomials, the approximation of the rational function (1.2) is obtained, reaching in .this way 

the a priori specified accuracy. The approximation is determined on a computer. 

The selection of parameter B as large as possible is dictated by the desire to devise 

effective solution approximations, however excessively large values of B result in an in- 

creased approximation error or a sharp increase of the order of approximating polynomials. 

In our numerical calculations we assumed B = 10. Formula (1.13) was used for calculating con- 

tact stresses on a computer. The change of stresses with increasing generalized frequency 

% was observed in the case of the boundary problem formulated above. 

Curves of the real part of q(z)are shown in Fig.1 for several values of parameter x2 , 
with q= -I and a =5. Curves of the real (solid line) and imaginary (dash line) parts of 

q(z) are shown in Fig.2 for ).I%= 2.6 and a=3, and in Fig.3 for x* := 3.4 and (I '5, with 

9 7 0, -0.5, and -1. 
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Fig.1 
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Fig.2 
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Fig.3 

The obtained data are in good agreement with those of numerical calculations in /ll/. 

However, the method presented here is more effective than that used in /ll/, since it makes 

possible the allowance for the singularity at the stamp edge. The curves which define the 

behavior of the real part of q(z) (Fig.1) coincide with the curves in /ll/ throughout the 

interval (--a, a) except at its ends. 

It should be pointed out that +he proposed method is applicable to stamps of large and 

small width and, also, to three-dimensional problems. 

3. This method proved to be very effective in a number of three-dimensional problems, 

such as vibration of a stamp of wedge-shaped cross section, or of dynamics of a wedge shaped 

cavity. 
Application of the Mellin transform over .the radius issuing from the wedge apex reduces 

the integral equation of the three-dimensionalproblemtothe equationoftheplaneproblemofthe 

form (l.l), and this makes possible the use of the proposed here method. It follows from Sect. 

1 that one of the important aspects is the derivation of solution qO(z) for some limit equa- 
tion (1.6). 

The kernel of the contact problem on the action of a stamp of wedge-shaped cross section 

on an elastic half-space /12/ reduced to the form 

is the kernel of the limit equation in the problem of vibration of a wedge-shaped stamp. In 

the above equation s is the parameter of the Mellin transform and r(z) is the Euler function. 

In Eq. (1.1) a=a and 2a is the wedge apex angle. 
The approximate solution of this integral equation which is valid for all angles a can 

be represented in a form different from that in /la/ by applying the method of /13/. That 

solution is of the form 

q0 (s) = t (% O) -k& ck b) It (% k) + t c--q, h)] (3.1) 

where t (rp, 0) = [2f1 (s)l-‘[R (ei”) + R (e+v)l 

t (cp, k) = [‘fi (s)l-I (1 + ‘/?I’, + l/zl’~_,) [R (e’“) + R (rim)] + 

li ik Te q 
[ i: 
I-cosa+ (P,-2cosaP,,_, + P,-,)P,_,], k#O 

m=2 

R (es”) = 
,-irp 2 

1/:!(cosq -0Xa) ' 
/3(s)= a,- In + 

and PI; -: Pk(cOsa) are Legendre pOlynOmialS. 

Coefficients ch. are determined by the system 
0z 

bh.(s)=a&. (s)-+, k=l,2,... (3.2) 
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where t,,, are the Fourier coefficients of function t (cp, k). 
Inversion of the Mellin transform by the method of residues, when only zeros sh. of the 

determinant A(s) of system (3.2) and functions p CY) are known, results for any a in a solu- 
tion of the problem of the form 

The approximate values of sO* for fi(s,,) = 0 and A(s,,) = 0 are the same. 

The dependence of s,,* on a a is in good agreement with that first obtained by Rvachev 

/14/ and is of the form 

cl 0 x/G n/3 n/1) 2?c/3 %/cl .7 

s0* -0.5 -0.56 -0.63 -1.0 -0.35 -0.24 -1.5 

The system of integral equations for the determination of normal and tangential stresses 

for a wedge-shaped rigidly coupled with an elastic medium, reduces for small apex angles a 
to two separate equations for the form (1.1). 

For small c the kernels of differential equations are 

which were investigated in /15/. 

The behavior of these stresses at the stamp apex is defined by a formula similar to (3.3) 

with 

The remainder term contains the imaginary component. 
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